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We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the
presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac
drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic
substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the
longitudinal velocity increases in a series of discrete steps that are integer multiples ofav / s2pd, wherea is the
lattice constant of the substrate. Fractional steps can also occur. These integer and fractional steps correspond
to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or
negative transverse direction where a nonzero transverse velocity occurs in the absence of a dc transverse
drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a
series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse
rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also
investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that
for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are
no longer flat but show a linearly increasing velocity.
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I. INTRODUCTION

Recently there has been a growing interest in nonequilib-
rium systems that show a rectification or ratchet effect, typi-
cally for a particle moving in some form of asymmetric po-
tential [1]. In these systems, a net dc drift in one direction
can occur even though only an ac drive or ac flashing of the
potential is applied. Such ratchet phenomena have been ex-
amined in a variety of systems, including biological motors
[2], colloidal particles moving through asymmetric potentials
[2,3], atom transport in optical lattices[4], charge transport
in quantum dot systems[5], transport of granular particles
[6], and vortices in superconductors and superconducting
quantum interference devices(SQUID’s) [7,8]. In most of
these systems there is some form of underlying asymmetric
substrate potential which is responsible for the symmetry
breaking that gives rise to the rectification. Additionally,
most of the systems studied so far have one-dimensional
(1D) or effectively 1D geometries.

For 2D systems, it is possible to break the symmetry of
the system without introducing an asymmetric substrate. One
example of rectification in two dimensions is the motion of
biomolecules or polymers through periodic arrays of posts
[9,10]. Here the particles are driven in alternating directions
by an electric field. Another approach to 2D rectification is to
drive particles through a periodic array at various angles
[11–13]. The particle motion becomes locked to certain
stable angles, such as 45° for a square array, even when the
external drive is applied in a different direction. Several the-
oretical studies have also considered models of particles
moving in 2D asymmetric potentials, leading to rectification
and negative differential conductivity[14,15]. In a recently
proposed model, spatiotemporal symmetry breaking is
caused by the application of an external wave to a system

with a periodic potential[16]. In other models, the asymme-
try of quantities other than the substrate produces a rectifi-
cation [17]. A better understanding of 2D systems that ex-
hibit rectification can assist in the creation of technological
devices for applications such as the separation of different
species of colloids or biomolecules or new techniques for
electrophoresis.

The phase locking that occurs when particles are driven
over periodic substrates in the presence of an ac drive has
also been intensely studied. This phenomenon arises when
the external ac frequencyv matches the internally generated
frequency of the motion of the particle over the periodic
potential. One of the best known examples of phase locking
is the Shapiro steps observed as steps in theVsId curves of
Josephson-junction arrays[18]. The step widths oscillate
with the ac amplitudeA, with the nth step varying as the
modified Bessel functionJnsA/vd. Shapiro step-like phase
locking is also observed for dc and ac drives in sliding
charge-density wave systems[19], as well as vortex motion
in superconductors with periodic substrates[20–22].

In typical phase-locking systems, the ac drive is applied in
the samedirection as the dc drive. Additionally, most of the
well-studied phase locking systems can be considered as ef-
fectively 1D. Phase locking should also occur in two dimen-
sions when the ac drive is applied in a different direction
from the dc drive; however, very little is known about the
behavior of phase locking in this case. Rectification may
occur even for motion in a symmetric potential if the ac drive
in a 2D system breaks the symmetry, such as a circular ac
drive.

In a recent model for vortices in a 2D superconductor
moving over a periodic potential, the ac drive wasperpen-
dicular to the dc drive[23]. In this case the phase locking
that occurred was distinct from Shapiro steps. For these per-
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pendicular ac drives, the widths of the steps do not oscillate
with the drive amplitude, as would be expected for Shapiro
steps, but instead they monotonically increase as the square
of the ac amplitude for square substrates and linearly for
triangular substrates.

For elastic media moving over arandomsubstrate, it is
also possible to have a periodic velocity component in both
the longitudinal and transverse directions due to the period-
icity of the elastic media itself. When an ac drive is applied
in the same direction as the dc drive for random disorder,
Shapiro-like phase locking effects can again be observed,
such as in sliding charge-density waves[19] and vortex lat-
tices [24–26]. In recent simulations and theory for the case
of a perpendicular ac drive for vortex lattices interacting with
random pinning, a transverse phase locking occurs[27]. In
two dimensions, it is possible to applytwo ac drives which
are perpendicular to one another such that the particle, in the
absence of a dc drive, would move in a circle. The behavior
of the system in this case has been largely unexplored.

In this work we study the motion of overdamped particles
moving over a two-dimensional symmetric periodic substrate
where there are two perpendicular ac drives and an addi-
tional dc drive that is applied along a symmetry direction of
the substrate. The main different feature of this model that is
distinct from the phase locking found in other studies is that
with a circular drive the phase locking can also be accompa-
nied by a rectification effect.

A. Overview

The organization of this paper is as follows: In Sec. II we
outline our model of a particle moving over a 2D periodic
substrate with an applied circular ac drive and dc drive. We
also describe our molecular dynamics simulation technique.

In Sec. III, we show that for small ac amplitudes and low
dc drives, the particle is pinned and moves in a circular orbit
near a potential minimum. As a function of the applied dc
driving force fdc in the longitudinal direction, there is a de-
pinning threshold for the particle motion. For increasing
drive beyond the threshold, the longitudinal velocityVx in-
creases in a series of steps; however, there is no rectification
and the transverse velocityVy is zero. For increasing ac am-
plitude of fixed frequency and no dc drive, the circular par-
ticle orbit increases in radius, and there is a series of stable
orbits which are commensurate with the periodicity of the
substrate.

In Sec. IV, we illustrate that when a dc drive is applied for
ac amplitudes such that the particle orbit encircles one po-
tential maximum, the longitudinal velocity increases in a se-
ries of prominent integer steps. Between these integer steps,
there is a series of smaller fractional steps with a structure
similar to a devil’s staircase.

In Sec. V, we show that for the same range of ac ampli-
tude where the particle orbit encircles one maximum, there
are also distinct regions wherean interesting transverse rec-
tification occurs. Such rectification does not occur in the
standard Shapiro step type phase locking with a single ac
drive. The rectification phases are centered between the inte-
ger steps in the longitudinal velocity. The maximum velocity

in the rectification regions isav / s2pd, and we observe
smaller fractional rectification steps as well. The rectification
can be in either the positive or negative direction. We map
out the phase diagram of the rectification phases as a func-
tion of ac amplitude and dc drive, and show that it consists of
a series of tongues. We find in general that as the ac ampli-
tude increases, the number of regions that show a rectifica-
tion also increases.

In Sec. VI we examine different types of disorder which
will be relevant in experimental systems. For increasing ther-
mal disorder, the phases begin to smear; however, regions of
rectification persist up to high temperatures. We also con-
sider the effects of particle-particle interactions when mul-
tiple particles move through the arrays. In this case, incom-
mensuration effects produce a partial smearing of the phases.

In Sec. VII we present a simple model that captures most
of the features of the system, including integer and fractional
steps in the longitudinal velocity as well as steps in the trans-
verse velocity that correspond to positive or negative rectifi-
cation.

In Sec. VIII we discuss some experimental systems in
which the phase locking and ratchet effects that are seen in
our model might be observed, including colloids moving
through periodic traps, biomolecules driven through arrays
of posts, vortices in superconductors with periodic pinning
arrays, and classical electron motion in antidot arrays. A
shorter version of portions of the work presented here has
been previously published[28].

II. SIMULATION

We consider an overdamped particle moving in two di-
mensions and interacting with an underlying square periodic
substrate, where we use periodic boundary conductions in
the x andy directions. The equation of motion for a particle
i is

f i = fs + fdc + fac = hvi , s1d

where the damping constanth is set to unity. The substrate
force fs arises from a square array with perioda of repulsive
sites, each of which has forcefs

j =−=Usrd. To model specific
physical systems we considerUsrd=lnsrd, corresponding to a
thin film superconductor with a periodic array of pinning
sites, where each pinning site captures one vortex and an
additional vortex sits in the interstitial region between pin-
ning sites. This interstitial vortex interacts with a square pe-
riodic substrate created by the pinned vortices. We have also
consideredUsrd=1/r and Usrd=e−rk / r, which could model
one mobile particle in an array of trapped colloids or ions.
We have considered systems of different sizes and find that
for most of the results presented here, 8a38a is adequate.
The dc drivefdc is applied along the symmetry axis of the
substrate array, in thex or longitudinal direction. The ac
drive has two components, given by

fac = A sinsvAtdx̂ − B cossvBtdŷ. s2d

In all of our results there isno dc driving component in they
or transverse direction. We fixwA/wB=1.0 andA=B. As an
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initial condition, we place the particle close to the center of a
plaquette. For different initial placements, the results are
identical. In a single simulation the dc drivefdc is increased
from 0 to 2.0 in increments of 0.0001, where 33105 time
steps are spent at each increment to ensure a steady state. We
measure the particle trajectories and velocities in the longi-
tudinal Vx=oi

Nvx̂ ·vi and transverse directionVy=oi
Nvŷ ·vi.

We have also considered the casesAÞB and vAÞvB, as
well as the addition of a phase offset and driving with more
complicated ac forms. These introduce a considerable num-
ber of new behaviors not found for the strictly circular case,
and have been detailed in a separate publication[29].

III. COMMENSURATE ORBITS AND DEPINNING

In Fig. 1 we show the locations of the substrate potential
maxima of the form lnsrd and the trajectories or orbits of the
mobile particle for fixedfdc=0.0 and ac amplitudes ofA
=sad 0.0, sbd 0.15, scd 0.3, and (d) 0.45. For A=0 [Fig.
1(a)], the particle is stationary and is located at the center of
a plaquette at the potential minimum. For 0.0,A,0.25, the
particle moves in a circular orbit around the center of the
plaquette, as seen in Fig. 1(b). The radius of the orbit in-
creases withA, and the orbit becomes increasingly square as
A approaches 0.25, reflecting the square symmetry of the
caging potential in the plaquette. For 0.25,A,0.375, the
radius of the orbit is large enough that, during a single peri-
odic cycle, the particle encircles one potential maximum, as
shown in Fig. 1(c). For 0.4,A,0.5, the particle moves in a
stable orbit that encircles four potential maxima, as in Fig.
1(d). Between the regions where four and one maxima are
encircled, for 0.375,A,0.4, the orbits are unstable and the
particle is no longer localized but undergoes diffusion. Stable

orbits also occur for higher ac amplitudes where 9 and 25
maxima are encircled, with regions of delocalized particle
motion falling between the ac amplitudes that produce stable
orbits. A similar phenomena of commensurate orbits for par-
ticles undergoing circular or cyclotron motion in a periodic
array of scatterers also occurs in electron pinball models
[30]. Another similar system is the vortex pinball model,
where stable orbits occur for vortices in superconductors
with periodic pinning arrays when the density of the mag-
netic field is such that there are twice as many vortices as
pinning sites[31].

In Fig. 2 we plot the depinning thresholdfdp vs ac ampli-
tudeA for the system in Fig. 1 under the application of a dc
force. The depinning threshold decreases continuously with
increasingA for 0.0,A,0.25 when the particle is circling
inside a single plaquette, as illustrated in Fig. 1(b). For
A.0.25, the depinning threshold increases withA and
reaches a local maximum atA=0.3, corresponding to the
center of the range of ac amplitudes over which the stable
orbit encircles one potential maximum[Fig. 1(c)]. The de-
pinning threshold drops to zero for 0.375,A,0.4, when the
particle is delocalized. ForA.0.4, fdp again increases with
A to a local maximum atA=0.45 at the center of the region
where the particle orbit encircles four potential maxima. We
also find nonzero depinning thresholds for higher values ofA
at which 9 and 25 potential maxima are encircled by the orbit
in a single period.

IV. PHASE LOCKING FOR LOW AC AMPLITUDES

We now consider the phase locking phenomena for low ac
amplitudes 0,A,0.25, when the particle moves in the in-
terstitial region between the potential maxima as in Fig. 1(b).
In Fig. 3 we plotVx vs fdc for increasing ac amplitudesA
=0.0,0.5,0.15, and 0.2, showing that a series of steps occur
which increase in width with increasingA from zero atA
=0. The depinning threshold decreases with increasingA.
The height of thenth step isVx=nav / s2pd, and asA in-
creases, higher order steps can be resolved. If the ac drive
were applied in thex direction only, Shapiro-type steps
would occur with Vx=nav / s2pd on the nth step. For

FIG. 1. Potential maxima(black dots), driven particle(large
dot), and particle trajectory(black line) for ac amplitude A
=sad 0.0, sbd 0.15, scd 0.3, and(d) 0.45.

FIG. 2. Depinning forcefdp vs ac amplitudeA. The letters a, b,
c, and d correspond to the amplitudes at which the orbits shown in
Figs. 1(a)–1(d) occur.
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Shapiro-type phase locking, the velocity vs force curve at the
beginning and end of each step would be continuous; how-
ever, the edges of the steps in Fig. 3 are extremely sharp. The
average velocity component in they direction is strictly zero
for all values ofA,0.25. For variedv the location of the
steps shifts; however, the same general behavior occurs.

The quantization of the step height is a result of the peri-
odicity of the drive. Although the particle has translated byn
unit cells in thex direction after a single period of the drive,
the particle is in thesame locationwithin its unit cell as it
was at the start of the period. Thus, up to this translation by
n cells, the orbit is periodic with period 2p /v. The particle
therefore moves a distance ofna in a time of 2p /v, giving a
velocity of Vx=nav / s2pd.

In Fig. 4 we plot the widthW of the n=1 step vsA for
0.0,A,0.36. The width increases withA for A,0.225, an
ac amplitude just below the transition at which the particle
orbit changes from encircling zero to encircling one potential
maximum at zero dc drive.W then decreases with increasing
A, reaching a minimum atA=0.3, which corresponds to the
peak in the depinning threshold shown in Fig. 2. For Shapiro
step-type locking, the higher order step widths would fit to a
Bessel function as a function of ac amplitude. Here, although
the step widthW does show an oscillatory behavior similar
to that of Shapiro steps,W does not fit well to a Bessel
function form, particularly due to the sharp cusp atA
=0.225.

In Figs. 5(a) and 5(b) we illustrate the particle trajectories
along the first and second steps inVx for fixed A=0.15, and
in Fig. 5(c) we show an orbit for a nonstep region. Along the
n=1 step[Fig. 5(a)], the particle performs a loop at the cen-
ter of each plaquette and its motion is perfectly regular. For
then=2 step[Fig. 5(b)], the regular particle orbit has a kink
or very small loop in every second plaquette. For higher
order steps, we find stable orbits similar to those shown in
Figs. 5(a) and 5(b), where for thenth step a small loop in the
orbit occurs in everynth plaquette. For a typical nonstep
region, such as that illustrated in Fig. 5(c), the orbits are
disordered or chaotic, and the particle does not follow any
particular trajectory. We also find that some fractional steps
can occur near the edges of the main steps withVx
=pav / s2pqd, wherep and q are integers. These fractional
steps are much smaller in width than the integer steps.

The origin of the fractional steps is similar to that of the
integer steps. Consider a particle that has started in a given
position within some unit cell. After a single period of the
drive, the particle may or may not have moved to another
cell. However, after a single period, it is in adifferentposi-
tion within the unit cell than that which it occupied at the
start. Only afterq periods elapse does the particle return to
the same position in the unit cell. Thus, up to a translation by
some number of unit cells, the orbit is periodic with period
2pq/v. If the particle translates byp cells in this time, we
obtain a velocity ofVx=pav / s2pqd.

V. PHASE LOCKING AND RECTIFICATION FOR
HIGHER AC AMPLITUDES

We next turn to the phase locking for ac amplitudes
0.225,A,0.4, where the particle orbit encircles one

FIG. 3. The velocity in thex direction, Vx, vs fdc for A
=0.0,0.05,0.15, and 0.2 from bottom to top. The curves have been
systematically shifted iny for clarity.

FIG. 4. Width of the first phase locking stepn=1 vsA from the
curves shown in Fig. 3.

FIG. 5. Potential maxima(black dots), driven particle(large
dot), and particle trajectories(black lines) for the sample in Fig. 3 at
A=0.15.(a) The particle orbit on then=1 step inVx at fdc=0.1. (b)
The orbit for then=2 step atfdc=0.17.(c) The particle orbit for the
nonstep region atfdc=0.208.
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potential maximum as shown in Fig. 1(c). In Fig. 6 we
plot Vx vs fdc for increasing ac amplitudes ofA
=0.25,0.275,0.3,0.325,0.35,0.375, and 0.4. Figure 6 shows
that Vx exhibits a series of steps, most of which have
dVx/dfdc=0. Thenth step hasVx=nav / s2pd. For increasing
ac amplitudes, more steps can be resolved at higher values of
fdc. The widths of some of the steps can be seen to grow with
increasingA, while others decrease. There are also some re-
gions of drive which do not settle onto clearly defined steps.
These regions become more prominent for higher values of
A. For example, in Fig. 6, the depinning and then=1 and 2
steps of the two upper curvesA=0.375 and 0.4 have large
fluctuations. The depinning threshold for the bottom curve at
A=0.25 also shows a similar behavior. These values ofA are
close to or at the transition where the number of potential
maxima encircled by the particle orbit atfdc=0.0 changes.
For the upper curves, this is from one to four maxima, and
for the lower curve, it is from zero to one maximum. By
watching animations of the particle orbits, we observe that in
general the particle is jumping between the two different
orbits on these poorly defined steps. At these values ofA the
particle orbits are delocalized and the depinning threshold is
zero, as shown in Fig. 2. Another feature of theVx curves is
that occasionally there are regions where the velocity jumps
down in value with increasingfdc, such as in theA=0.275
curve near the transition between then=3 andn=4 steps at
fdc=0.28. In these cases the particle orbit jumps from the
highern orbit back to the lower state. In general these step
down effects occur near then to n+1 transitions. If we repeat
the same simulation with slightly different initial conditions,
similar jumps occur in the same regions offdc but are not
identical. We have previously shown that along the flat steps,
the particle orbits are stable. Along thenth step the particle
moves a distancena in the x direction in a single period.

In Fig. 7 we show the particle orbits on the integer steps
n=1,2,3, and 4 for thesystem in Fig. 6 atA=0.325. For the
drives shown,kVyl=0. At zero drive, the orbit has the square
shape illustrated in Fig. 1(c). On then=1 step atfdc=0.054
[Fig. 7(a)], the particle circles around a single maximum and
moves in thex direction by a distancea per period. For the
n=2 step atfdc=0.1 [Fig. 7(b)], the nature of the particle
motion changes. Rather than circling around every second

maximum, the particle moves through a smaller loop that is
less thana in diameter in every other plaquette so that in one
period the particle moves a distance 2a. Similar motion oc-
curs on then=3 step atfdc=0.18 [Fig. 7(c)], but the loop
occurs every third plaquette. Along then=4 step at fdc
=0.24[Fig. 7(d)], the particle translates 4a in a single period.

In Fig. 8 we plot the orbits along then=5,7,8, and 9
steps for the same system as in Fig. 6 atA=0.325. For the
n=5 step atfdc=0.325, the orbit is essentially the same as
those in stepsn=2 to n=4 from Fig. 7. The figure has a loop
in every plaquette since we have shown the particle crossing
the periodic boundary several times, and the particle does not
follow its previous path until it has completed several passes
through the system due to the fact that the orbit repeats every
five plaquettes but the sample has an even number of
plaquettes. If we chose a system size which is a multiple of
5a wide, the orbit is repeated during each pass through the
system. Whether the sample size is commensurate with the
orbit shape does not change any features inVx or Vy. On the
n=7 step atfdc=0.45 [Fig. 8(b)], the particle is moving fast
enough in thex direction that it can no longer loop down into
the lower row. The orbit still shows a small loop inside the
row every seventh plaquette. For then=8 step shown in Fig.
8(c) at fdc=0.49, the particle motion is again contained
within one row and shows a very small loop every 8a. The
orbit is commensurate with the sample size so the orbit re-
peats exactly during each pass. For then=9 step at fdc
=0.53 [Fig. 8(d)], the orbit is similar to that seen for then
=7 andn=8 steps, with a small loop every 9a. For much
higher fdc, the particle does not lock to a fixed orbit for this
value ofA.

FIG. 6. Vx vs fdc for, from bottom to top, A
=0.25,0.275,0.3,0.325,0.35,0.375, and 0.4. The curves have been
systematically shifted iny for clarity.

FIG. 7. Particle trajectories(black lines), driven particle(large
dot), and periodic potential maxima(black dots) for the first four
steps inVx from Fig. 6 for theA=0.325 curve.(a) n=1 step at
fdc=0.054.(b) n=2 step atfdc=0.1. (c) n=3 step atfdc=0.18. (d)
n=4 step atfdc=0.24.
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In addition to the integer steps, we also observe fractional
steps in the regions between the integer steps. In general
these fractional phases are associated with the onset of rec-
tification, where the average particle velocity is no longer
strictly in thex direction.

A. Rectifying phases

In Fig. 9 we plot simultaneouslyVx, which increases with
fdc, and Vy vs fdc for a fixed value ofA=0.325. Here, the
steps inVx have heightav / s2pd, while Vy showsnonzero
valuescentered at the step transitions inVx. The maximum
value ofVy is av / s2pd in the positive direction as seen near
the n=2 to n=3, n=3 to n=4, andn=4 to n=5 step transi-
tions. At then=5 to n=6 transition,Vy=−av / s2pd. There

are also ranges of drive over which the value ofVy is not a
multiple of av / s2pd, such as at then=0 to n=1, n=1 to n
=2, and then=5 to n=6 steps. Rectification occurs every-
where along then=6 step. No rectification occurs for then
=7 step and above, which also corresponds to the orbits be-
coming confined to a single row for these highfdc values, as
illustrated in Fig. 8.

The rectification can be understood by considering the
symmetries of the problem. The dc drive breaks the reflec-
tion symmetry across they axis Ry, but preservesRx, reflec-
tion across thex axis, as can be seen by noting that the
reflectionRy would change the sign of the dc drive(which is
applied in thex direction) while the reflectionRx would leave
the drive unchanged. The dc drive also breaks the combined
symmetryRxRy. The ac drive breaks bothRx andRy individu-
ally, but preserves the combined symmetryRxRy. Here, either
the reflectionRx or the reflectionRy reverse the direction of
the ac drive from counterclockwise to clockwise, but the
combinationRxRy leaves the drive unchanged up to a change
in the phase of the drive(corresponding to a shift int by half
a period). The combination of the ac and dc drives break all
of the symmetries in the problem.

To see the effect of the symmetries, consider first the situ-
ation with only the dc drive, when the system has the sym-
metry Ry. Then, if the particle has an orbit with nonzeroVy,
by symmetry it must also have an orbit with the oppositeVy.
If both such orbits exist, there is a spontaneous symmetry
breaking which can produce a rectification. Such a spontane-
ous symmetry breaking has been observed in similar systems
[32]. Similarly, if we have only the ac drive, the system has
the symmetryRxRy. Then the existence of an orbit with given
Vx,Vy would imply the existence of an orbit with velocities
−Vx,−Vy, and spontaneous symmetry breaking would again
be possible. In the case considered in our simulations, since
all symmetries are broken, we can have rectifying orbits
without any spontaneous symmetry breaking. We have seen
in fact that the sign of the rectification does not depend on
initial conditions, and we show below that the rectification
persists even at nonzero temperature; both of these are con-
sequences of the fact that the symmetries of the system are
broken by the drives, rather than broken spontaneously.

In Fig. 10 we plot a series ofVy vs fdc curves for 0.25
øAø0.4, showing the evolution of the rectifying regions.
As A increases, the maximum value offdc at which rectifi-
cation is observed also increases, coinciding with the resolu-
tion of more integer steps as shown in Fig. 6. ForA,0.32
(the first five curves from the bottom), the rectification is
predominantly in the positivey direction, while forA.0.32,
several phases appear which rectify in the negativey direc-
tion, as seen forA=0.327,0.343,0.356, and 0.363. For
A.0.37 (the top three curves), an increasing number of re-
gions appear where there is no well defined locking but there
is some form of rectification. These disordered regions first
occur at lowfdc values forA=0.375 and 0.38, while for the
A=0.4 curve the disordered regions also appear at higher
fdc=0.6. The rectification phases shift in position withA and
the width of the phases grows and then subsequently shrinks
with A. The phases which rectify in the positive direction
shift toward lowerfdc with increasingA, while the negative
rectification phases shift toward higherfdc asA is increased.

FIG. 8. Particle trajectories(black lines), periodic potential
maxima(black dots), and driven particle(large dot) for the velocity
steps from Fig. 6 atA=0.325.(a) n=5 step atfdc=0.325.(b) n=7
step at fdc=0.45. (c) n=8 step atfdc=0.49. (d) n=9 step atfdc

=0.53.

FIG. 9. Vx (light line) andVy (dark line) vs fdc for A=0.325.
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The shift can be qualitatively understood by considering that
the particle rotates clockwise. For the positive rectification
regions, if we consider one cycle starting at a position ofy
=a/2 andx=0 and circling around the potential maximum at
s0,0d, the particle is moving fastest neary= +a/2 when the
ac and dc drives are in the same direction, and slowest near
y=−a/2 when the ac drive opposes the force from the dc
drive. If, on thenth step, the particle translates a distancena
per period, then on the downward moving portion of the ac
orbit, the particle interacts strongly with one of the potential
maxima. If this interaction is too strong, the particle cannot
translate down by one row in they direction. At the same
time, the particle continues to move in the positivex direc-
tion. If, during the downward stroke, the particle moves a
distance close tona/2, then on the upward part of the ac
cycle, the particle doesnot interact strongly with a potential
maximum and can thus move up in they direction by a
distancea. As a result, there is a net motion in the +y direc-
tion each cycle. The positions of the positive rectifying re-
gions shift to lowerfdc at higher values ofA since, in the
portion of the cycle when the ac and dc forces are in the
same direction, a smaller dc drive is required to translate the
particle a distancena for larger A. We also note that if the
circular ac drive is reversed, theVy vs fdc curves are flipped
and positive rectification becomes negative rectification.

In Fig. 11 we show several examples of rectifying phases
where Vy=av / s2pd for the case ofA=0.325 from Fig. 9.
Figure 11(a) illustrates the first integer rectifying phase for
fdc=0.1295 where there is a transition from then=2 to the
n=3 step. In a single cycle, the particle moves 2a in the x
direction anda in the y direction. Additionally, a small loop
in the orbit occurs in every third plaquette. Similar motion
occurs on then=3 step at largerfdc, where the particle
moves 3a in the x direction anda in the y direction during
each cycle. In Fig. 11(b) we show the orbit forfdc=0.21 for
the n=3 to n=4 transition, where the particle moves 3a in
the x direction in a single cycle. In Fig. 11(c), near then
=4 to n=5 transition forfdc=0.29, the particle moves 4a in
the direction of drive during every cycle. The loop feature
that occurs just before the particle translates a distancea in
they direction becomes smaller with increasing step number.

In Fig. 11(d), we show negative rectification forfdc=0.42,
where the particle moves 6a in the x direction and −a in the
y direction in a single period. Here the loop feature seen for
the positive rectification orbits is lost and is replaced by a
kink feature.

In Fig. 12 we show several examples of fractional recti-
fying orbits for A=0.325. Figure 12(a) illustrates the trajec-
tories for the rectification at then=0 (pinned) to n=1 step
transition atfdc=0.0465. In this case, the particle moves 2a
in the x direction anda in the positivey direction everytwo
cycles. To achieve this, the particle movesa in the x direc-
tion and on averagea/2 in the positivey direction in each
cycle. In Fig. 12(b) we show the negative rectification re-
gime near then=1 ton=2 transition forfdc=0.0688. We find
a similar motion as in Fig. 12(a). Every two cycles, the par-
ticle moves 2a in the positivex direction. The orbit forms a
complete loop around one potential maximum during the
first cycle, followed by an incomplete loop in the next cycle,
at the end of which the particle has translated down bya.
Thus in a single period, the particle moves 2a in thex direc-
tion and an average of −a/2 in they direction. We also find
that at the onset of the integer rectifying phases, there can be
a small region where the particle exhibits a fractional recti-
fication. In Fig. 12(c) we show one such region that occurs at
the end of the rectifying phase near then=3 to n=4 transi-
tion for fdc=0.215. Here, in a single period the particle
moves 4a in the x direction, while it translates bya in the y
direction every other cycle. During the first cycle, the trajec-
tory dips down and up but the particle does not translate to
the next upper row. On the following cycle, a cusp forms and
the particle moves up to the next row. There are also several
regimes for largeA where the particle orbits rectify but do

FIG. 10. Velocity in the y-direction, Vy, vs fdc for A
=0.25, 0.262, 0.28, 0.306, 0.31, 0.327,0.343,0.356,0.363,0.375,
0.38 and 0.4, from bottom to top. There is a systematic shift in the
y-direction added for clarity.

FIG. 11. Particle trajectories(black lines), periodic potential
maxima(black dots), and driven particle(large dot), showing inte-
ger rectifying orbits from the system in Fig. 9 forA=0.325 and
fdc=sad 0.1295,sbd 0.21, scd 0.29, and(d) 0.42.
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not repeat. ForA=0.325 in Fig. 9, such a regime occurs near
fdc=0.378. In Fig. 12(d) we plot the disordered orbit that
occurs in this regime, showing that it has a net drift in they
direction. We have also examined the rectifying orbits for
other values ofA and find that they are similar to those
shown in Figs. 11 and 12.

B. Rectification phase diagram

In Fig. 13 we plotfdc vs A, and indicate the occurrence of
integer rectification in the positivey direction by shaded re-
gions. The phase diagram has the form of a series of tongues,
where the width of any given rectifying phase decreases for
increasingA. A larger number of rectifying phases appear at
higher dc drive for increasingA, as seen from the rising

envelope which begins atfdc=0.25. The rectifying phases for
fdc.0.25 increase in width withA over a small range ofA
before reaching a maximum width and then decreasing in
width with increasingA. We do not have the resolution to
determine whether the rectifying phases persist with continu-
ally decreasing width for higher ac amplitudes, or whether
they actually terminate. We note that forA.0.44, above the
fdc=0 transition from the orbit encircling one to encircling
four maxima, a new set of rectifying phases appear at low
fdc, not shown in the figure.

We note that it is difficult to plot a phase diagram for the
regions of negative rectification that occur forA.0.35. Here
the locking steps become hard to define due to the disordered
regions whereVy does not settle down to a single value. In
general, the negative rectification regimes show similar fea-
tures to the positive rectification regions, with the width of
the rectifying regime growing to a maximum value and then
decreasing for increasingA. The phases also shift to higher
fdc for increasingA.

VI. EFFECTS OF DISORDER

A. Thermal disorder

In many experimentally realizable systems such as col-
loids or biomolecules, thermal effects or Brownian motion
are relevant. To model thermal effects, we add a noise term
fT to the equation of motion, with the propertieskfTstdl
=0.0 andkfTstdfTst8dl=2hkBdst− t8d. We have performed a
series of simulations forA=0.3 for different values of tem-
perature. In Fig. 14 we showVy vs fdc for A=0.325 for
increasing temperature. For lowT there are still regions of
Vy<0 within our resolution. The particle orbit at low tem-
peratures shows only small perturbations, so the behavior is
thermally activated andVy is not strictly zero but instead is
exponentially small. For higherT, the orbits are strongly
perturbed, and the maximum value ofVy decreases while the
width of the rectifying regimes increases. For the highest
temperatures, the particle diffuses rapidly; however, some
rectification still occurs. For the top curvesT=1d there is
only a slight positive rectification forfdc,0.4. As T in-
creases further the rectification is gradually completely lost.

FIG. 12. Particle trajectories(black lines), periodic potential
maxima(black dots), and driven particle(large dot) showing frac-
tional rectifying orbits from the system in Fig. 9 forA=0.325 and
fdc=sad 0.0465,sbd 0.0688,scd 0.215, and(d) 0.378.

FIG. 13. fdc vs A, where the shaded regions indicate positive
integer rectifying regions obtained from Fig. 9.

FIG. 14. Vy vs fdc for increasingT at A=0.325 and(bottom to
top) T=0.0,0.025,0.0625, 0.1225,0.5, and 1.0. The curves have
been shifted in they direction for clarity.
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In Fig. 15 we plot the averageVy for the positive rectification
region at fdc=0.29 for the bottom curve in Fig. 14 atT
=0.0. We define the temperature scale such that atT=1.0, a
single particle withfdc=0.0 begins to diffuse, indicating that
T=1 is the melting temperature for our parameters. In our
system we have only one colloid, so thermal activation oc-
curs at a much lower temperature than for a collection of
interacting colloids. Figure 15 shows a decay ofVy with
increasingT, as illustrated more clearly in the inset. A reli-
able fit can be applied, giving 2pVysTd /av=f1−exp
3s−B/Tdg, which indicates thermal activation. The tempera-
ture scale can be changed by increasing the depth of the
periodic wells as well as by the addition of other particles,
which alters the effects of fluctuations.

B. Particle interactions

In many experimentally relevant systems it is likely that
multiple particles would be moving through the array at the
same time. If the density of the particles is sufficiently high,
particle-particle interactions or scattering become relevant.
For low fillings where the particles are still far apart, theVy
curves are only weakly perturbed. As the filling fraction is
increased, theVy curves exhibit some disordering. There are
certain higher filling fractions such as 1/16 where theVy
curve is virtually identical to the single particle case. This is
due to a commensuration effect. For particles with long
range interactions such as vortices in superconductors or col-
loids which are weakly screened, commensuration effects
will occur for different particle densities. For fillings such as
1/2 where there is one mobile particle for every other
plaquette, the particles form an ordered arrangement. In the
case of half filling, the particles form a checkerboard state.
Similar ordered states occur at fillings of 1/16, 1/8, 1/5, and
1/4. Since the arrangements are symmetrical at these fillings,
the interactions effectively cancel and the system shows the
same behavior as the single particle case. At incommensurate
fillings where ordered particle arrangements cannot be
formed, the particle-particle interactions become relevant.

VII. SIMPLE MODEL SYSTEM

Let us return to the quantization of the velocity discussed
above, and consider both the stable plateaus and the intermit-

tent transitions between plateaus using general properties of
nonlinear maps. Define a mapsx,yd→ sx8+nxa,y8+nyad,
from the position of the particle at the start of a period to that
at the end, where we may restrict to 0øx,y,x8 ,y8øa, with
nx,ny integer. Here, we have takenx,y,x8 ,y8 to indicate po-
sitions of the particle within a unit cell, whilenx,ny indicate
which unit cell the particle occupies after one orbit. We have
fixed the unit cell of the particle at the start of the orbit; by
translation symmetry, it does not matter which cell this is. If
there is a stable fixed point,sx,yd=sx8 ,y8d, then the particle
translates bysnxa,nyad in time 2pv−1 and so has average
velocity Vx,Vy quantized in multiples ofav / s2pd, as found
above. If theqth power of the map has a stable fixed point,
there are instead steps of fractional heightssp/qdav.

As fdc increases, the periodic orbit becomes unstable, and
a different periodic orbit with largerVx appears. This new
orbit will be the next stable periodic orbit at higher drive.
The transition to the new orbit can occur in one of three
ways. (1) If both periodic orbits are stable simultaneously,
the particle velocity will depend on the initial conditions in
the transition regime. This was not observed.(2) The second
periodic orbit could become stable at the same time that the
first orbit becomes unstable. This behavior, which gives rise
to infinitely sharp jumps inVx, is not generic and hence not
expected.(3) There can be a finite range of drive containing
no stable periodic orbits. Over this range, the average veloc-
ity is not quantized. If, however, some orbits are close to
stable, the particle will spend long times in these orbits, giv-
ing rise to intermittent behavior. This last behavior is consis-
tent with what we observe.

The stability of the orbits is shown by the fact that in the
middle of the plateaus the system is not sensitive to initial
conditions, and by the exponentially small change in velocity
at nonzero temperature. Outside the plateaus, the change in
average velocity most likely will not show a thermally acti-
vated form. We were not able to accurately measure the ve-
locity in these reasons well enough to determine the tempera-
ture dependence of the velocity.

We now turn to a specific toy model illustrating some of
these ideas. Consider a particle in a lattice of repulsive sites
with a=1, where the potential minima between repulsive
sites are at integerx and y values. They position of the
particle is constrained to take only integer values, but thex
position can be any real value. To model the translation of
the particle through the lattice, we separate thex andy mo-
tion, so that the particle moves first(i) right at velocityvr,
then (ii ) down, then(iii ) left at velocity vl, then (iv) up. In
some cases, steps(ii ) and (iv) of the cycle may not produce
a change iny due to the constraint thaty can be only integer
valued; this corresponds to the confinement of the particle to
a single row in the physical system. We consider two slightly
different versions of the model. The first version, I, follows
the following sequence of transitions: I(i): We apply the rule
x→x+vr. I(ii ): If x is within 0.25 of an integer,x is set to
that integer andy is decremented by 1. I(iii ): Apply x→x
−vl. I(iv): As in (ii ) excepty is incremented by 1. Herevr
and vl are the velocity of the particle in the rightward and
leftward parts of the cycle, respectively. In steps I(ii ) and
I(iv), the particle will only move to a newy position if it

FIG. 15. 2pVy/av vs T for A=0.325 and fixedfdc=0.29. The
inset is a log-linear plot of the main figure.
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reaches the minima between sites at the correct phase of the
driving period, when transverse motion is possible. In this
case, the particle slips into the next row and thex coordinate
of the particle is set to an integer value. In Fig. 16 we show
the time-averaged velocitiesVx andVy obtained with model I
for fixed vl =1.2 and increasingvr, representing increasing
fdc. It is clear that this simple model produces plateaus inVx
as well as ratcheting behavior inVy. The sharp jumps in the
velocity values are due to the discontinuity of the map func-
tion, as in case(2) above; for smoother map functions, these
jumps acquire a small but finite width. More complicated
maps produce richer behavior, including occasional regimes
of negativeVy. To show this, we consider a slightly different
version of the model. In this model II, if thex position of the
particle is within a distance of 0.25 of an integer in step II(ii )
or II(iv), thex position is set equal to 0.25 times the present
x position plus 0.75 times the given integer. This smoother
map allows a much richer behavior; if the particle is within
0.25 of an integer in the model I, the final position of the
map does not depend on exactly where the particle position
is near the given integer, while in model II the final position
doesdepend on the precise particle position. We show the
average velocities for this model in Fig. 17.

The ratcheting behavior in both the model and simulations
occurs near transitions inVx when the number of pinning
centers the particle passes in one period changes, making it
possible for the particle to interact asymmetrically with the
pinning sites. For a clockwise orbit, the particle moves rap-
idly on the upper portion of the orbit, and is likely to scatter
off the pinning site below when the orbit does not quite
matchna. On the lower part of the orbit, however, the par-
ticle is moving more slowly, and is likely to slip between the
pinning sites above in spite of a small mismatch. The particle
thus tends to ratchet in the positivey direction. If the dc
drive is reversed, downward motion should be preferred, as
we observe.

Finally, we note that much of this behavior is specific to
two or more dimensions, or to systems in one dimension
which are not overdamped so that both position and momen-
tum are independent degrees of freedom. Consider a mapx
→x8, subject tox+a→x8+a anddx8 /dxù0, true for over-
damped motion in one dimension. It can then be shown that

it is not possible to have periodic orbits with different values
of the velocity as follows: Suppose there were two such or-
bits. Then, let initial conditions for the two orbits bex1 and
x2, and let the orbit starting atx1 have a greater velocity than
that starting atx2. Suppose thatx1,x2 (this can always be
accomplished by translatingx1 by some number of unit
cells); then, after some number of mappings,
fsf(¯sx1d¯)d. fsf(¯sx2d¯)d, which violates the assump-
tion that dx8 /dxù0. Thus all periodic orbits must have the
same value of the velocity. Systems with Shapiro steps do
not exhibit jumps.

VIII. DISCUSSION

We now consider physical systems where the phase lock-
ing and the rectification might be realized. One possibility is
colloids moving through a periodic 2D array. The array can
be constructed from a substrate of hard obstacles or more
smoothly varying objects. If the colloids are charged they
can be driven with dc and ac electric fields. The most prom-
ising approach would be to use periodic arrays of optical
traps[33–36] or dynamical optical trap arrays[11,13]. In this
case colloids can be trapped at individual spots of laser light.
Once the array is filled, additional colloids move through the
periodic potential created by the pinned colloids. One advan-
tage of the light arrays is that the array itself can be rotated
dynamically to mimic ac driving when only an external dc
force is applied. Recent experiments[12] have demonstrated
the flow of colloids in 2D through periodic optical trap ar-
rays. Another system would be vortices in superconductors
driven with ac and dc currents. Periodic arrays of pinning
sites can be lithographically constructed[37,38]. With the
application of a magnetic field, flux enters in the form of
quantized vortices. If the pinning sites are small enough that
only a single vortex can be trapped at each site, then beyond
the first matching field additional vortices will sit in the in-
terstitial regions. It should also be possible to create arrays of
antipinning sites, such as with an array of magnetic dots that
are magnetized in the same direction as the applied field and
create fixed vortices. Additional vortices created by the ex-
ternal field will move in the interstitial regions between the

FIG. 16. Time averagedVx (solid line) andVy (dashed line) as a
function of fdc in toy model I.

FIG. 17. Time averagedVx (solid line) andVy (dashed line) as a
function of fdc in toy model II.
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fixed vortices. These effects may also occur for fluxons in 2D
Josephson junction arrays driven with a dc drive and a cir-
cular ac drive. In this case the fluxon can be viewed as a
classical particle moving over a 2D periodic potential.

IX. SUMMARY

To summarize, we have investigated the dynamics of
overdamped particles moving in a 2D symmetrical periodic
array where the particles are driven with a dc drive in the
longitudinal direction and a circular ac drive. Our system is
different from other studies of phase locking, in which the ac
drive is applied in the same direction as the external dc drive.
The interesting feature that arises for the 2D case is the onset
of rectification phenomena where a net dc response occurs in
a direction that is different from the applied dc drive direc-
tion. For small ac drives, we observe phase locking in the
form of steps in the longitudinal velocity when the frequency
of the ac drive matches with the frequency of the internally
generated ac velocity component. For ac drives large enough
that the particle can encircle at least one potential maximum
at zero dc drive, we find phase locking steps in the longitu-
dinal velocity for increasing dc drive. Additionally, in this

regime we observe a nonzero transverse velocity in either the
positive or negative direction in spite of the fact that there is
no dc transverse applied drive. This rectification in the trans-
verse direction arises due to the symmetry breaking caused
by the circular ac drive. We propose and examine a more
simplified model of the system that reproduces many of these
features that we observe. The results of the simple model
suggest that the phase locking and rectification phenomena
described here are a general feature of a wide class of similar
systems. We show that stable particle orbits occur along the
longitudinal and transverse steps, while more chaotic orbits
appear in nonstep regions. Finally, we show that thermal dis-
order and incommensuration can smear or reduce the step
size, but regions of rectification still occur. Our results
should be testable for dc and driven vortex motion and col-
loids through 2D periodic arrays.
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