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Nonlinear dynamics, rectification, and phase locking for particles on symmetrical
two-dimensional periodic substrates with dc and circular ac drives
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We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the
presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac
drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic
substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the
longitudinal velocity increases in a series of discrete steps that are integer multiples(2fr), wherea is the
lattice constant of the substrate. Fractional steps can also occur. These integer and fractional steps correspond
to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or
negative transverse direction where a nonzero transverse velocity occurs in the absence of a dc transverse
drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a
series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse
rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also
investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that
for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are
no longer flat but show a linearly increasing velocity.
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[. INTRODUCTION with a periodic potential16]. In other models, the asymme-
try of quantities other than the substrate produces a rectifi-
Recently there has been a growing interest in nonequilibeation [17]. A better understanding of 2D systems that ex-
rium systems that show a rectification or ratchet effect, typi-hibit rectification can assist in the creation of technological
cally for a particle moving in some form of asymmetric po- devices for applications such as the separation of different
tential [1]. In these systems, a net dc drift in one directionspecies of colloids or biomolecules or new techniques for
can occur even though only an ac drive or ac flashing of thelectrophoresis.
potential is applied. Such ratchet phenomena have been ex- The phase locking that occurs when particles are driven
amined in a variety of systems, including biological motorsover periodic substrates in the presence of an ac drive has
[2], colloidal particles moving through asymmetric potentialsalso been intensely studied. This phenomenon arises when
[2,3], atom transport in optical latticgg], charge transport the external ac frequenay matches the internally generated
in quantum dot systemgb], transport of granular particles frequency of the motion of the particle over the periodic
[6], and vortices in superconductors and superconductingotential. One of the best known examples of phase locking
quantum interference devic€SQUID’s) [7,8]. In most of is the Shapiro steps observed as steps invfig curves of
these systems there is some form of underlying asymmetridosephson-junction arrayd8]. The step widths oscillate
substrate potential which is responsible for the symmetryith the ac amplitudeA, with the nth step varying as the
breaking that gives rise to the rectification. Additionally, modified Bessel function,(A/w). Shapiro step-like phase
most of the systems studied so far have one-dimension&bcking is also observed for dc and ac drives in sliding
(1D) or effectively 1D geometries. charge-density wave systerfis9], as well as vortex motion
For 2D systems, it is possible to break the symmetry ofin superconductors with periodic substraf28—-23.
the system without introducing an asymmetric substrate. One In typical phase-locking systems, the ac drive is applied in
example of rectification in two dimensions is the motion of the samedirection as the dc drive. Additionally, most of the
biomolecules or polymers through periodic arrays of postavell-studied phase locking systems can be considered as ef-
[9,1Q. Here the particles are driven in alternating directionsfectively 1D. Phase locking should also occur in two dimen-
by an electric field. Another approach to 2D rectification is tosions when the ac drive is applied in a different direction
drive particles through a periodic array at various anglegrom the dc drive; however, very little is known about the
[11-13. The particle motion becomes locked to certainbehavior of phase locking in this case. Rectification may
stable angles, such as 45° for a square array, even when tbecur even for motion in a symmetric potential if the ac drive
external drive is applied in a different direction. Several the-in a 2D system breaks the symmetry, such as a circular ac
oretical studies have also considered models of particledrive.
moving in 2D asymmetric potentials, leading to rectification In a recent model for vortices in a 2D superconductor
and negative differential conductivityi4,15. In a recently = moving over a periodic potential, the ac drive waerpen-
proposed model, spatiotemporal symmetry breaking iglicular to the dc drive[23]. In this case the phase locking
caused by the application of an external wave to a systerthat occurred was distinct from Shapiro steps. For these per-
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pendicular ac drives, the widths of the steps do not oscillatén the rectification regions ifw/(27), and we observe
with the drive amplitude, as would be expected for Shapiresmaller fractional rectification steps as well. The rectification
steps, but instead they monotonically increase as the squatan be in either the positive or negative direction. We map
of the ac amplitude for square substrates and linearly foout the phase diagram of the rectification phases as a func-
triangular substrates. tion of ac amplitude and dc drive, and show that it consists of
For elastic media moving over rndomsubstrate, it is  a series of tongues. We find in general that as the ac ampli-
also possible to have a periodic velocity component in bothude increases, the number of regions that show a rectifica-
the longitudinal and transverse directions due to the periodtion also increases.
icity of the elastic media itself. When an ac drive is applied In Sec. VI we examine different types of disorder which
in the same direction as the dc drive for random disorderwill be relevant in experimental systems. For increasing ther-
Shapiro-like phase locking effects can again be observednal disorder, the phases begin to smear; however, regions of
such as in sliding charge-density way@8] and vortex lat-  rectification persist up to high temperatures. We also con-
tices[24-26. In recent simulations and theory for the casesider the effects of particle-particle interactions when mul-
of a perpendicular ac drive for vortex lattices interacting withtiple particles move through the arrays. In this case, incom-
random pinning, a transverse phase locking oc¢@i. In mensuration effects produce a partial smearing of the phases.
two dimensions, it is possible to appiywo ac drives which In Sec. VII we present a simple model that captures most
are perpendicular to one another such that the particle, in thef the features of the system, including integer and fractional
absence of a dc drive, would move in a circle. The behaviosteps in the longitudinal velocity as well as steps in the trans-
of the system in this case has been largely unexplored.  verse velocity that correspond to positive or negative rectifi-
In this work we study the motion of overdamped particlescation.
moving over a two-dimensional symmetric periodic substrate In Sec. VIII we discuss some experimental systems in
where there are two perpendicular ac drives and an addivhich the phase locking and ratchet effects that are seen in
tional dc drive that is applied along a symmetry direction ofour model might be observed, including colloids moving
the substrate. The main different feature of this model that ishrough periodic traps, biomolecules driven through arrays
distinct from the phase locking found in other studies is thabf posts, vortices in superconductors with periodic pinning
with a circular drive the phase locking can also be accompaarrays, and classical electron motion in antidot arrays. A
nied by a rectification effect. shorter version of portions of the work presented here has
been previously publishef®8].

A. Overview

The organization of this paper is as follows: In Sec. Il we Il. SIMULATION
outline our model of a part_|cle moving over a 2D p(_arlod|c We consider an overdamped particle moving in two di-
substrate with an applied circular ac drive and dc drive. Wenansjons and interacting with an underlying square periodic
also describe our molecular dynamics simulation tECh”'quesubstrate, where we use periodic boundary conductions in

In Sec. 1ll, we show that for small ac amplitudes and low o y anqy directions. The equation of motion for a particle
dc drives, the particle is pinned and moves in a circular orbit ;

near a potential minimum. As a function of the applied dc

driving force f4. in the longitudinal direction, there is a de- fi =fs+fget+fac= 9V, (1)
pinning threshold for the particle motion. For increasing
drive beyond the threshold, the longitudinal velocity in-

creases in a series of steps; however, there is no rectificati . i
and the transverse velocity, is zero. For increasing ac am- sites, each of which has forég=-V U(r). To model specific

plitude of fixed frequency and no dc drive, the circular par-Physical systems we considefr)=In(r), corresponding to a
ticle orbit increases in radius, and there is a series of stabl@in film superconductor with a periodic array of pinning

orbits which are commensurate with the periodicity of theSit€S, where each pinning site captures one vortex and an
substrate. additional vortex sits in the interstitial region between pin-

In Sec. IV, we illustrate that when a dc drive is applied forn_ing sites. This interstitial vortex.interacts yvith a square pe-
ac amplitudes such that the particle orbit encircles one poiCdic substrate created by the pinned vortices. We have also
tential maximum, the longitudinal velocity increases in a se-consideredJ(r)=1/r and U(r)=e™/r, which could model
ries of prominent integer steps. Between these integer step@N® mobile particle in an array of trapped colloids or ions.

there is a series of smaller fractional steps with a structurdVe have considered systems of different sizes and find that
similar to a devil's staircase. for most of the results presented here,>88a is adequate.

In Sec. V, we show that for the same range of ac ampli-1ne dc drivefy. is applied along the symmetry axis of the
tude where the particle orbit encircles one maximum, theréubstrate array, in the or longitudinal direction. The ac
are also distinct regions wheam interesting transverse rec- drive has two components, given by
tification occurs. Such rectification does not occur in the Ao c 5
standard Shapiro step type phase locking with a single ac fac= A sin(wat)x = B codwgl)y. @
drive. The rectification phases are centered between the intén all of our results there iso dc driving component in thg
ger steps in the longitudinal velocity. The maximum velocity or transverse direction. We fixa/wg=1.0 andA=B. As an

where the damping constaptis set to unity. The substrate
cIﬁrcefS arises from a square array with peria®f repulsive
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: : : . : : . : : : : : _— : : FIG. 2. Depinning forcey, vs ac amplitudeA. The letters a, b,
... .. ¢, and d correspond to the amplitudes at which the orbits shown in
s 'Q' ° * Figs. Xa)-1(d) occur.
: : : orbits also occur for higher ac amplitudes where 9 and 25
Y Y maxima are encircled, with regions of delocalized particle

x () x Gy motion falling between the ac amplitudes that produce stable
orbits. A similar phenomena of commensurate orbits for par-
ticles undergoing circular or cyclotron motion in a periodic
array of scatterers also occurs in electron pinball models
[30]. Another similar system is the vortex pinball model,

. " ) where stable orbits occur for vortices in superconductors
initial condition, we place the particle close to the center of a,ih periodic pinning arrays when the density of the mag-

plaquette. For different initial placements, the results argetic field is such that there are twice as many vortices as
identical. In a single simulation the dc drivg; is increased  inning siteg31].

from 0O to 2.0 in increments of 0.0001, wherex30° time In Fig. 2 we plot the depinning threshofg, vs ac ampli-

steps are spent at each increment to ensure a steady state. \{{ge A for the system in Fig. 1 under the application of a dc
measure the particle trajectories and velocities in the longitorce, The depinning threshold decreases continuously with
tudinal V,=2i*X-v; and transverse directioNy=2*y-Vvi.  jncreasingA for 0.0< A<0.25 when the particle is circling
We have also considered the cages B and wa# ws, 8 jnside a single plaquette, as illustrated in Figb)l For
well as the addition of a phase offset and dr|V|r_1g with morep ~ 0.25, the depinning threshold increases withand
complicated ac fo_rms. These introduce a_con5|_derable NUMeaches a local maximum #=0.3, corresponding to the
ber of new behawors not. found for the stnqtly circular case,center of the range of ac amplitudes over which the stable
and have been detailed in a separate publicg@on orbit encircles one potential maximuffig. 1(c)]. The de-
pinning threshold drops to zero for 0.3z < 0.4, when the
particle is delocalized. Foh> 0.4, fy, again increases with
A to a local maximum afA=0.45 at the center of the region
In Fig. 1 we show the locations of the substrate potentiaivhere the particle orbit encircles four potential maxima. We
maxima of the form Ifr) and the trajectories or orbits of the also find nonzero depinning thresholds for higher values of
mobile particle for fixedfy,=0.0 and ac amplitudes ok @t which 9 and 25 potential maxima are encircled by the orbit
=(a) 0.0, (b) 0.15, (c) 0.3, and(d) 0.45. For A=0 [Fig.  In a single period.
1(a)], the particle is stationary and is located at the center of

FIG. 1. Potential maximgblack dot3, driven particle(large
dot), and particle trajectory(black ling for ac amplitude A
=(a) 0.0, (b) 0.15, (¢) 0.3, and(d) 0.45.

IIl. COMMENSURATE ORBITS AND DEPINNING

a plgquette at the potgntial minimum. For €.8.<0.25, the IV. PHASE LOCKING FOR LOW AC AMPLITUDES
particle moves in a circular orbit around the center of the
plaguette, as seen in Fig(k. The radius of the orbit in- We now consider the phase locking phenomena for low ac

creases withA, and the orbit becomes increasingly square asmplitudes 6<A<0.25, when the particle moves in the in-

A approaches 0.25, reflecting the square symmetry of thterstitial region between the potential maxima as in F0).1
caging potential in the plaquette. For 028<0.375, the In Fig. 3 we plotV, vs f4. for increasing ac amplitude&
radius of the orbit is large enough that, during a single peri=0.0,0.5,0.15, and 0.2, showing that a series of steps occur
odic cycle, the particle encircles one potential maximum, asvhich increase in width with increasing from zero atA
shown in Fig. 1c). For 0.4<A<0.5, the particle moves in a =0. The depinning threshold decreases with increaging
stable orbit that encircles four potential maxima, as in Fig.The height of thenth step isV,=naw/(27), and asA in-

1(d). Between the regions where four and one maxima arereases, higher order steps can be resolved. If the ac drive
encircled, for 0.375.A< 0.4, the orbits are unstable and the were applied in thex direction only, Shapiro-type steps
particle is no longer localized but undergoes diffusion. Stablevould occur with V,=naw/(27) on the nth step. For
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FIG. 3. The velocity in thex direction, V,, vs fy. for A A
=0.0,0.05,0.15, and 0.2 from bottom to top. The curves have been e o o o o o o o
systematically shifted iy for clarity. e e o o o o

Shapiro-type phase locking, the velocity vs force curve at the
beginning and end of each step would be continuous; how-
ever, the edges of the steps in Fig. 3 are extremely sharp. The

average velocity component in tlyedirection is strictly zero X ©
for all values of A<0.25. For variedw the location of the ) . ) _

The quantization of the step height is a result of the peri_dot), and particle traj_ectorie(:_black lineg for theT sample in Fig. 3 at
odicity of the drive. Although the particle has translatechby A=0.15.(3) The particle orbit on th@=1 step inV, at f4c=0.1.(b)
unit cells in thex direction after a single period of the drive, The orbitfor then=2 step aff4:=0.17.(c) The particle orbit for the
the particle is in thesame locatiorwithin its unit cell as it ~nonstep region at;c=0.208.
was at the start of the period. Thus, up to this translation by
n cells, the orbit is periodic with period7® w. The particle
therefore moves a distancemd in a time of 27/ w, giving a
velocity of V,=naw/(2m7).

In Figs. Ha) and gb) we illustrate the particle trajectories
along the first and second stepsMpfor fixed A=0.15, and

in Fig. 5(c) we show an orbit for a nonstep region. Along the
4 . _ n=1 step[Fig. 5a)], the particle performs a loop at the cen-
In Fig. 4 we plot the widthW of the n=1 step vsA for ter of each plaquette and its motion is perfectly regular. For

0.0=A<0.36. The width increases with for A<0.225, 8N 01— step(Fig. 5b)], the regular particle orbit has a kink
ac famphtude Just beloyv the transition at W.h'Ch the partlc_leor very small loop in every second plaquette. For higher
orbit changes fromder:jcwcl|nghzerc(>jto encircling r?ne pOtem"”uorder steps, we find stable orbits similar to those shown in
maximum at zero dc drivel then decreases with increasing ' :

. . ; Figs. Ha) and %b), where for thenth step a small loop in the
A, reaching a minimum aA=0.3, which corresponds to the gs. &) ) P b

. I g - orbit occurs in everynth plaquette. For a typical nonste
peak in the depinning threshold shown in Fig. 2. For Shap'rqegion, such as thaﬂllusﬁra?ed in Fig(ch t%/g orbits arep

step-type quking, the higher order step_widths would fit to jisordered or chaotic, and the particle does not follow any
Bessel fun(_:t|on as a function of ac gmphtude. Her_e, al.th(.)ugrﬂ)articular trajectory. We also find that some fractional steps
the step W|dth\N_d0es show an oscnlat.ory behavior similar can occur near the edges of the main steps ith

;0 that 01; Shapiro _steIpS{V ddoes not rf]'t Wﬁ" o a Bessel =paw/(27q), wherep andq are integers. These fractional
_u(r)u;nzc?sn orm, particularly due to the sharp cusp At steps are much smaller in width than the integer steps.
Tt The origin of the fractional steps is similar to that of the

' ' ' ' ' integer steps. Consider a particle that has started in a given
position within some unit cell. After a single period of the
drive, the particle may or may not have moved to another
cell. However, after a single period, it is indifferent posi-
tion within the unit cell than that which it occupied at the
start. Only afterg periods elapse does the particle return to
the same position in the unit cell. Thus, up to a translation by
some number of unit cells, the orbit is periodic with period
2mq/ w. If the particle translates by cells in this time, we
obtain a velocity ofV,=paw/(27q).

0.1

o
o
3]

Step Width

0.1 0.2 0.3 V. PHASE LOCKING AND RECTIFICATION FOR

A HIGHER AC AMPLITUDES

FIG. 4. Width of the first phase locking ste1 vsA from the We next turn to the phase locking for ac amplitudes
curves shown in Fig. 3. 0.225<A<0.4, where the particle orbit encircles one
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=0.25,0.275,0.3,0.325,0.35,0.375, and 0.4. The curves have bee
systematically shifted ity for clarity. f_, AP Ltz
potential maximum as shown in Fig(cd. In Fig. 6 we A P R
plot V, vs f4 for increasing ac amplitudes ofA e e e s e e e . e e e e e =
=0.25,0.275,0.3,0.325,0.35,0.375, and 0.4. Figure 6 Show. | . v v & o o o N

that V, exhibits a series of steps, most of which have - _
dV,/dfy.=0. Thenth step had/,=naw/(27). For increasing © ()
ac amplitudes, more steps can be resolved at higher values of FIG. 7. Particle trajectoriegblack lineg, driven particle(large

fae- The widths of some of the steps can be seen to grow Wmaot), and periodic potential maximglack dot$ for the first four

increasingA, while others decrease. There are also some r€teps inV, from Fig. 6 for theA=0.325 curve.(a) n=1 step at
gions of drive which do not settle onto clearly defined steps¢, —0.054.(b) n=2 step atf4.=0.1. (c) =3 step atf4.=0.18.(d)

These regions become more prominent for higher values of=4 step atf4.=0.24.

A. For example, in Fig. 6, the depinning and tirel and 2

steps of the two upper curves=0.375 and 0.4 have large maximum, the particle moves through a smaller loop that is
fluctuations. The depinning threshold for the bottom curve atess thara in diameter in every other plaquette so that in one
A=0.25 also shows a similar behavior. These value& afe  period the particle moves a distanca. Similar motion oc-
close to or at the transition where the number of potentiaturs on then=3 step atf,.=0.18 [Fig. 7(c)], but the loop
maxima encircled by the particle orbit &.=0.0 changes. occurs every third plaquette. Along the=4 step atfy,

For the upper curves, this is from one to four maxima, and=0.24[Fig. 7(d)], the particle translatesadn a single period.

for the lower curve, it is from zero to one maximum. By  In Fig. 8 we plot the orbits along the=5,7,8, and 9
watching animations of the particle orbits, we observe that irsteps for the same system as in Fig. 6Aa0.325. For the
general the particle is jumping between the two differentn=5 step atf4,=0.325, the orbit is essentially the same as
orbits on these poorly defined steps. At these valugsthe  those in steps=2 ton=4 from Fig. 7. The figure has a loop
particle orbits are delocalized and the depinning threshold i every plaquette since we have shown the particle crossing
zero, as shown in Fig. 2. Another feature of Mecurves is  the periodic boundary several times, and the particle does not
that occasionally there are regions where the velocity jumpsollow its previous path until it has completed several passes
down in value with increasindy., such as in thed=0.275  through the system due to the fact that the orbit repeats every
curve near the transition between the3 andn=4 steps at five plaquettes but the sample has an even number of
f4c=0.28. In these cases the particle orbit jumps from theplaquettes. If we chose a system size which is a multiple of
highern orbit back to the lower state. In general these stefsa wide, the orbit is repeated during each pass through the
down effects occur near theto n+1 transitions. If we repeat system. Whether the sample size is commensurate with the
the same simulation with slightly different initial conditions, orbit shape does not change any feature,ior Vy. On the
similar jumps occur in the same regions fgf but are not n=7 step atf4.=0.45[Fig. 8b)], the particle is moving fast
identical. We have previously shown that along the flat stepsenough in thex direction that it can no longer loop down into
the particle orbits are stable. Along théh step the particle the lower row. The orbit still shows a small loop inside the
moves a distancea in the x direction in a single period. row every seventh plaquette. For the8 step shown in Fig.

In Fig. 7 we show the particle orbits on the integer stepsg(c) at f,,=0.49, the particle motion is again contained
n=1,2,3, and 4 for theystem in Fig. 6 aA=0.325. For the  within one row and shows a very small loop every. She
drives shown(V,)=0. At zero drive, the orbit has the square orbit is commensurate with the sample size so the orbit re-
shape illustrated in Fig.(&). On then=1 step atf4.=0.054 peats exactly during each pass. For the9 step atfy
[Fig. 7(a)], the particle circles around a single maximum and=0.53 [Fig. &d)], the orbit is similar to that seen for the
moves in thex direction by a distanca per period. For the =7 andn=8 steps, with a small loop everya9For much
n=2 step atfy.=0.1 [Fig. 7(b)], the nature of the particle higherf. the particle does not lock to a fixed orbit for this
motion changes. Rather than circling around every secondalue of A.
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FIG. 8. Particle trajectoriegblack lineg, periodic potential
maxima(black dot3, and driven particlg¢large doj for the velocity
steps from Fig. 6 aR=0.325.(a) n=5 step atf;.=0.325.(b) n=7
step atfy.=0.45.(c) n=8 step atfy.=0.49.(d) n=9 step atfy.

=0.53.

In addition to the integer steps, we also observe fractional
steps in the regions between the integer steps. In gener.

(d
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are also ranges of drive over which the valuevgfis not a
multiple of aw/(27), such as at the=0 ton=1,n=1ton

=2, and then=5 to n=6 steps. Rectification occurs every-
where along the=6 step. No rectification occurs for the

=7 step and above, which also corresponds to the orbits be-
coming confined to a single row for these hifj values, as
illustrated in Fig. 8.

The rectification can be understood by considering the
symmetries of the problem. The dc drive breaks the reflec-
tion symmetry across thg axis R, but preserve®,, reflec-
tion across thex axis, as can ée seen by noting that the
reflectionR, would change the sign of the dc drigehich is
applied in thex direction) while the reflectiorR, would leave
the drive unchanged. The dc drive also breaks the combined
symmetryRR,. The ac drive breaks bof, andR, individu-
ally, but preserves the combined symme®jR . Here, either
the reflectionR, or the reflectionR, reverse the direction of
the ac drive from counterclockwise to clockwise, but the
combinationR,R, leaves the drive unchanged up to a change
in the phase of the drivecorresponding to a shift inby half
a period. The combination of the ac and dc drives break all
of the symmetries in the problem.

To see the effect of the symmetries, consider first the situ-
ation with only the dc drive, when the system has the sym-
metry R,. Then, if the particle has an orbit with nonzev,
by symmetry it must also have an orbit with the oppo$ije
If both such orbits exist, there is a spontaneous symmetry
breaking which can produce a rectification. Such a spontane-
ous symmetry breaking has been observed in similar systems
32]. Similarly, if we have only the ac drive, the system has
%e symmetnR,R,. Then the existence of an orbit with given

V, would imply the existence of an orbit with velocities

these fractional phases are associated with the onset of recx’ 'y

tification, where the average particle velocity is no Ionger_vx'

strictly in thex direction.

A. Rectifying phases

In Fig. 9 we plot simultaneously,, which increases with
fae andVy vs fy. for a fixed value ofA=0.325. Here, the
steps inV, have heightaw/(2m), while V, showsnonzero

valuescentered at the step transitions\ip. The maximum
value ofV, is aw/(2m) in the positive direction as seen near
then=2 ton=3, n=3 ton=4, andn=4 to n=5 step transi-
tions. At then=5 to n=6 transition,V,=-aw/(2m). There

9
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LO LA NWPAEODN®O©O

]
n

=}
e
o

FIG. 9. V, (light line) andV,, (dark ling) vs fy. for A=0.325.

-Vy, and spontaneous symmetry breaking would again
be possible. In the case considered in our simulations, since
all symmetries are broken, we can have rectifying orbits
without any spontaneous symmetry breaking. We have seen
in fact that the sign of the rectification does not depend on
initial conditions, and we show below that the rectification
persists even at nonzero temperature; both of these are con-
sequences of the fact that the symmetries of the system are

broken by the drives, rather than broken spontaneously.

In Fig. 10 we plot a series 0¥, vs f,. curves for 0.25
<A=0.4, showing the evolution of the rectifying regions.
As A increases, the maximum value fyf; at which rectifi-

cation is observed also increases, coinciding with the resolu-
tion of more integer steps as shown in Fig. 6. Por0.32

(the first five curves from the bottomthe rectification is
predominantly in the positivg direction, while forA>0.32,
several phases appear which rectify in the negafidérec-

tion, as seen forA=0.327,0.343,0.356, and 0.363. For
A>0.37 (the top three curvgsan increasing number of re-
gions appear where there is no well defined locking but there
is some form of rectification. These disordered regions first
occur at lowf . values forA=0.375 and 0.38, while for the
A=0.4 curve the disordered regions also appear at higher
f4c=0.6. The rectification phases shift in position witand

the width of the phases grows and then subsequently shrinks
with A. The phases which rectify in the positive direction
shift toward lowerf 4. with increasingA, while the negative
rectification phases shift toward highky, asA is increased.
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FIG. 10. Velocity in the y-direction, V,, vs fq. for A
=0.25, 0.262, 0.28, 0.306, 0.31, 0.327,0.343,0.356,0.363,0.375,
0.38 and 0.4, from bottom to top. There is a systematic shift in the
y-direction added for clarity.

The shift can be qualitatively understood by considering that
the particle rotates clockwise. For the positive rectification |~ « « o [¢ « « = e
regions, if we consider one cycle starting at a positiory of
=a/2 andx=0 and circling around the potential maximum at
(0,0, the pa_rtlcle IS mOVIng fastest_newt +a/2 when the FIG. 11. Particle trajectoriegblack lineg, periodic potential
ac and dc drives are in the same direction, and slowest Neg{aximablack dots, and driven particlélarge doj, showing inte-
y=-a/2 when the ac drive opposes the force from the dcyer rectifying orbits from the system in Fig. 9 fé=0.325 and
drive. If, on thenth step, the particle translates a distanee £, =(a) 0.1295, (b) 0.21, (c) 0.29, and(d) 0.42.
per period, then on the downward moving portion of the ac
orbit, the particle interacts strongly with one of the potentialln Fig. 11(d), we show negative rectification fd.=0.42,
maxima. If this interaction is too strong, the particle cannotwhere the particle movesa@n the x direction and a in the
translate down by one row in the direction. At the same y direction in a single period. Here the loop feature seen for
time, the particle continues to move in the positiveirec-  the positive rectification orbits is lost and is replaced by a
tion. If, during the downward stroke, the particle moves akink feature.
distance close tma/2, then on the upward part of the ac  In Fig. 12 we show several examples of fractional recti-
cycle, the particle doesot interact strongly with a potential fying orbits for A=0.325. Figure 1@) illustrates the trajec-
maximum and can thus move up in tlyedirection by a tories for the rectification at the=0 (pinned to n=1 step
distancea. As a result, there is a net motion in thg direc-  transition atf4.=0.0465. In this case, the particle moves 2
tion each cycle. The positions of the positive rectifying re-in the x direction anda in the positivey direction everytwo
gions shift to lowerfy, at higher values oA since, in the cycles. To achieve this, the particle mowe# the x direc-
portion of the cycle when the ac and dc forces are in theion and on averaga/2 in the positivey direction in each
same direction, a smaller dc drive is required to translate theycle. In Fig. 12b) we show the negative rectification re-
particle a distancea for larger A. We also note that if the gime near thex=1 ton=2 transition forf,.=0.0688. We find
circular ac drive is reversed, thg vs fy curves are flipped a similar motion as in Fig. 12). Every two cycles, the par-
and positive rectification becomes negative rectification.  ticle moves 2 in the positivex direction. The orbit forms a

In Fig. 11 we show several examples of rectifying phasegomplete loop around one potential maximum during the
where Vy=aw/(2m) for the case ofA=0.325 from Fig. 9. first cycle, followed by an incomplete loop in the next cycle,
Figure 1%a) illustrates the first integer rectifying phase for at the end of which the particle has translated downaby
f4c=0.1295 where there is a transition from the2 to the  Thus in a single period, the particle movesig the x direc-
n=3 step. In a single cycle, the particle moves i@l thex  tion and an average ofaf2 in they direction. We also find
direction anda in they direction. Additionally, a small loop that at the onset of the integer rectifying phases, there can be
in the orbit occurs in every third plaguette. Similar motion a small region where the particle exhibits a fractional recti-
occurs on then=3 step at largerfy, where the particle fication. In Fig. 12c) we show one such region that occurs at
moves & in the x direction anda in they direction during the end of the rectifying phase near the3 to n=4 transi-
each cycle. In Fig. 1b) we show the orbit forf4.=0.21 for  tion for f4.=0.215. Here, in a single period the particle
the n=3 to n=4 transition, where the particle movea &1  moves 4 in the x direction, while it translates bg in they
the x direction in a single cycle. In Fig. 14), near then direction every other cycle. During the first cycle, the trajec-
=4 to n=5 transition forfy.=0.29, the particle movesadin  tory dips down and up but the particle does not translate to
the direction of drive during every cycle. The loop featurethe next upper row. On the following cycle, a cusp forms and
that occurs just before the particle translates a distanice the particle moves up to the next row. There are also several
they direction becomes smaller with increasing step numbenregimes for largeA where the particle orbits rectify but do
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FIG. 14. V, vs fq for increasingT at A=0.325 andbottom to
top) T=0.0,0.025,0.0625, 0.1225,0.5, and 1.0. The curves have
been shifted in the direction for clarity.

envelope which begins &§.=0.25. The rectifying phases for
fgc=>0.25 increase in width with over a small range of
before reaching a maximum width and then decreasing in
width with increasingA. We do not have the resolution to
determine whether the rectifying phases persist with continu-
FIG. 12. Particle trajectoriegblack lineg, periodic potential ally decreasing width for higher ac amplitudes, or whether
maxima(black dot3, and driven particlelarge doj showing frac- ey actually terminate. We note that far>0.44, above the
tional rectifying orbits from the system in Fig. 9 f6=0.325and ¢~ transition from the orbit encircling one to encircling
fac=(2) 0.0465, (b) 0.0688,(c) 0.215, andd) 0.378. four maxima, a new set of rectifying phases appear at low
fge NOt shown in the figure.
not repeat. FOA=0.325 in Fig. 9, such a regime occurs near  \We note that it is difficult to plot a phase diagram for the
f4c=0.378. In Fig. 12d) we plot the disordered orbit that regions of negative rectification that occur for-0.35. Here
occurs in this regime, showing that it has a net drift inyhe the locking steps become hard to define due to the disordered
direction. We have also examined the rectifying orbits forregions wherev, does not settle down to a single value. In
other values ofA and find that they are similar to those general, the negat|ve rectification regimes show similar fea-

shown in Figs. 11 and 12. tures to the positive rectification regions, with the width of
the rectifying regime growing to a maximum value and then
B. Rectification phase diagram decreasing for increasing. The phases also shift to higher

In Fig. 13 we plotfy. vs A, and indicate the occurrence of fac for increasingA.

integer rectification in the positive direction by shaded re-

gions. The phase diagram has the form of a series of tongues, VL. EFFECTS OF DISORDER

where the width of any given rectifying phase decreases for A. Thermal disorder

increasingA. A larger number of rectifying phases appear at i i

higher dc drive for increasing\, as seen from the rising N many experimentally realizable systems such as col-

loids or biomolecules, thermal effects or Brownian motion
are relevant. To model thermal effects, we add a noise term
fT to the equation of motion, with the properti¢g'(t))
; 7 =0.0 and(fT(t)fT(t"))=27kgd(t-t’). We have performed a
G4 4 1 series of simulations foA=0.3 for different values of tem-
0.3 23 4f . perature. In Fig. 14 we show, vs fq. for A=0.325 for
L | increasing temperature. For loWwthere are still regions of
« V,~0 within our resolution. The particle orbit at low tem-
' peratures shows only small perturbations, so the behavior is
thermally activated and, is not strictly zero but instead is
exponentially small. For highefF, the orbits are strongly
perturbed, and the maximum value\4f decreases while the
b T i width of the rectifying regimes increases. For the highest
‘ ' T oA ‘ ' temperatures, the particle diffuses rapidly; however, some
rectification still occurs. For the top curv@=1) there is
FIG. 13. f4. vs A, where the shaded regions indicate positive only a slight positive rectification fofy.<0.4. As T in-
integer rectifying regions obtained from Fig. 9. creases further the rectification is gradually completely lost.

L ¥ Iy

0.4 “5)
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tent transitions between plateaus using general properties of
nonlinear maps. Define a magx,y)— (x'+n.a,y’ +n,a),
from the position of the particle at the start of a period to that
at the end, where we may restrict te<®,y,x’,y’ <a, with
e ny, Ny integer. Here, we have takeny,x’,y’ to indicate po-
< osf Ol sitions of the particle within a unit cell, while,,n, indicate
> T which unit cell the particle occupies after one orbit. We have
fixed the unit cell of the particle at the start of the orbit; by
translation symmetry, it does not matter which cell this is. If
there is a stable fixed pointx,y)=(x’,y’), then the particle
translates by(n,a,na) in time 2rw™ ! and so has average
velocity Vy,V, quantized in multiples obw/(2m7), as found
above. If thegth power of the map has a stable fixed point,
FIG. 15. 27Vy/aw vs T for A=0.325 and fixed4c=0.29. The there are instead steps of fractional heiglptsg)aw.
inset is a log-linear plot of the main figure. As f4. increases, the periodic orbit becomes unstable, and
a different periodic orbit with large¥, appears. This new
In Fig. 15 we plot the averagéy for the positive rectification orbit will be the next stable periodic orbit at higher drive.
region atfy.=0.29 for the bottom curve in Fig. 14 &t The transition to the new orbit can occur in one of three
=0.0. We define the temperature scale such that=t.0, a Ways. (1) If both periodic orbits are stable simultaneously,
single particle withf4.=0.0 begins to diffuse, indicating that the particle velocity will depend on the initial conditions in
T=1 is the melting temperature for our parameters. In outhe transition regime. This was not observed). The second
system we have only one colloid, so thermal activation ocPeriodic orbit could become stable at the same time that the
curs at a much lower temperature than for a collection ofirst orbit becomes unstable. This behavior, which gives rise
interacting colloids. Figure 15 shows a decay\§f with  to infinitely sharp jumps iV, is not generic and hence not
increasingT, as illustrated more clearly in the inset. A reli- expected(3) There can be a finite range of drive containing
able fit can be applied, giving 2/(T)/aw=[1-exp NO stable periodic orbits. Over this range, the average veloc-
X (-B/T)], which indicates thermal activation. The tempera-ity is not quantized. If, however, some orbits are close to
ture scale can be changed by increasing the depth of thdable, the particle will spend long times in these orbits, giv-
periodic wells as well as by the addition of other particlesy”’]g rise to intermittent behavior. This last behavior is consis-

. I .
0 0.5 1
T

which alters the effects of fluctuations. tent with what we observe. _
The stability of the orbits is shown by the fact that in the
B. Particle interactions middle of the plateaus the system is not sensitive to initial

conditions, and by the exponentially small change in velocity
multiple particles would be moving through the array at thealt nonzero temperaturg. Out3|.de the plateaus, the change n
same time. If the density of the particles is sufficiently high, 2 S'2d¢ velocity most likely will not show a thermally acti-

: 'vated form. We were not able to accurately measure the ve-

lg?):tllg\?v_I?iﬁirr?Clsev\lﬂteerrea?ﬁgnsarct)irclzza;tﬁa“ggl| t?:rczmaertreleva rI'ocity in these reasons well enough to determine the tempera-
9 P part, ¥g ture dependence of the velocity.

ces s o1 ieal perbed. A ane g Taclon e W now tum 0  specictoy model ustating some of
' / 9- these ideas. Consider a particle in a lattice of repulsive sites

y ) gep : : sites are at integex andy values. They position of the
due to a commensuration effect. For particles with long

. . : . article is constrained to take only integer values, butxthe
range interactions such as vortices in superconductors or cal-

In many experimentally relevant systems it is likely that

loids which are weakly screened. commensuration effect osition can be any real value. To model the translation of
) ) y s ” - e particle through the lattice, we separate xtendy mo-
will occur for different particle densities. For fillings such as

. : ; tion, so that the particle moves fir6) right at velocityu,,
1/2 where there is one mobile particle for every Otherthen(ii) down, then(iii) left at velocityv,, then(iv) up. In

plaquette, the particles form an ordered arrangement. In th . :
case of half filling, the particles form a checkerboard stategome cases, steps) and(iv) of the cycle may not produce

- - change iry due to the constraint thgtcan be only integer
S'm"af ordered states occur at fillings of l./16’ 1/8, 1/5.’ ana\;j/lalued; this corresponds to the confinement of the particle to
1/4. Since the arrangements are symmetrical at these filling

the interactions effectively cancel and the system shows tt;?%smgle row in the physical system. We consider two slightly

same behavior as the sinale particle case. At incommensur ifferent versions of the model. The first version, |, follows
. giep X e following sequence of transitiongi)t We apply the rule
filings where ordered particle arrangements cannot b(;(

formed, the particle-particle interactions become relevant —X+u. 1(i): If X is within 0.25 of an integen is set to
' P P " that integer and/ is decremented by 1(iii): Apply Xx—X

—v;. I(iv): As in (ii) excepty is incremented by 1. Here,
andv, are the velocity of the particle in the rightward and
Let us return to the quantization of the velocity discussedeftward parts of the cycle, respectively. In stegs)land

above, and consider both the stable plateaus and the intermldv), the particle willonly move to a newy position if it

VIl. SIMPLE MODEL SYSTEM
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FIG. 16. Time averageW, (solid ling) andV, (dashed lingas a FIG. 17. Time average¥, (solid line) andV, (dashed lingas a
function of f4; in toy model I. function of f4. in toy model I1.

reaches the minima between sites at the correct phase of the i o _ o
driving period, when transverse motion is possible. In thislt iS not possible to have periodic orbits with different values
case, the particle slips into the next row and trepordinate ~ Of the velocity as follows: Suppose there were two such or-
of the particle is set to an integer value. In Fig. 16 we showbits. Then, let initial conditions for the two orbits ke and
the time-averaged velocitié andV, obtained with model | X, and let the orbit starting a& have a greater velocity than
for fixed v;=1.2 and increasing,, representing increasing that starting at,. Suppose thax; <x, (this can always be
fqe Itis clear that this simple model produces plateaug,in accomplished by translating; by some number of unit
as well as ratcheting behavior Wy. The sharp jumps in the cells); then, after some number of mappings,
velocity values are due to the discontinuity of the map func-f(f(: - -(xy)- - +)) > f(f(- - «(x») - *)), which violates the assump-
tion, as in cas¢2) above; for smoother map functions, thesetion thatdx'/dx=0. Thus all periodic orbits must have the
jumps acquire a small but finite width. More complicated same value of the velocity. Systems with Shapiro steps do
maps produce richer behavior, including occasional regimenot exhibit jumps.
of negativeV,. To show this, we consider a slightly different
version pf the 'mode'l. In this model II, if tbeposﬁpn of t.he VIIl. DISCUSSION
particle is within a distance of 0.25 of an integer in step)ll
or lI(iv), the x position is set equal to 0.25 times the present We now consider physical systems where the phase lock-
X position plus 0.75 times the given integer. This smootheing and the rectification might be realized. One possibility is
map allows a much richer behavior; if the particle is within colloids moving through a periodic 2D array. The array can
0.25 of an integer in the model I, the final position of the be constructed from a substrate of hard obstacles or more
map does not depend on exactly where the particle positioamoothly varying objects. If the colloids are charged they
is near the given integer, while in model Il the final position can be driven with dc and ac electric fields. The most prom-
doesdepend on the precise particle position. We show thdsing approach would be to use periodic arrays of optical
average velocities for this model in Fig. 17. traps[33—3§ or dynamical optical trap array41,13. In this

The ratcheting behavior in both the model and simulationsase colloids can be trapped at individual spots of laser light.
occurs near transitions iW, when the number of pinning Once the array is filled, additional colloids move through the
centers the particle passes in one period changes, makingperiodic potential created by the pinned colloids. One advan-
possible for the particle to interact asymmetrically with thetage of the light arrays is that the array itself can be rotated
pinning sites. For a clockwise orbit, the particle moves rap-dynamically to mimic ac driving when only an external dc
idly on the upper portion of the orbit, and is likely to scatter force is applied. Recent experimefil®] have demonstrated
off the pinning site below when the orbit does not quitethe flow of colloids in 2D through periodic optical trap ar-
matchna. On the lower part of the orbit, however, the par- rays. Another system would be vortices in superconductors
ticle is moving more slowly, and is likely to slip between the driven with ac and dc currents. Periodic arrays of pinning
pinning sites above in spite of a small mismatch. The particlesites can be lithographically constructggi7,3§. With the
thus tends to ratchet in the positivedirection. If the dc  application of a magnetic field, flux enters in the form of
drive is reversed, downward motion should be preferred, aguantized vortices. If the pinning sites are small enough that
we observe. only a single vortex can be trapped at each site, then beyond

Finally, we note that much of this behavior is specific tothe first matching field additional vortices will sit in the in-
two or more dimensions, or to systems in one dimensiorerstitial regions. It should also be possible to create arrays of
which are not overdamped so that both position and momergntipinning sites, such as with an array of magnetic dots that
tum are independent degrees of freedom. Consider axmapare magnetized in the same direction as the applied field and
— X', subject tox+a—x’+a anddx’'/dx=0, true for over- create fixed vortices. Additional vortices created by the ex-
damped motion in one dimension. It can then be shown thaernal field will move in the interstitial regions between the
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fixed vortices. These effects may also occur for fluxons in 2Dregime we observe a nonzero transverse velocity in either the
Josephson junction arrays driven with a dc drive and a cirpositive or negative direction in spite of the fact that there is
cular ac drive. In this case the fluxon can be viewed as &o dc transverse applied drive. This rectification in the trans-
classical particle moving over a 2D periodic potential. verse direction arises due to the symmetry breaking caused
by the circular ac drive. We propose and examine a more
simplified model of the system that reproduces many of these
. ) . ] features that we observe. The results of the simple model
To summarize, we have investigated the dynamics ofyggest that the phase locking and rectification phenomena
overdamped particles moving in a 2D symmetrical periodicgescribed here are a general feature of a wide class of similar
array where the particles are driven with a dc drive in thesystems. We show that stable particle orbits occur along the
longitudinal direction and a circular ac drive. Our system isjongitudinal and transverse steps, while more chaotic orbits
different from other studies of phase locking, in which the acappear in nonstep regions. Finally, we show that thermal dis-
drive is applied in the same direction as the external dc drivegrder and incommensuration can smear or reduce the step
The interesting feature that arises for the 2D case is the onsgfze  put regions of rectification still occur. Our results
of rectification phenomena where a net dc response occurs §hquld be testable for dc and driven vortex motion and col-
a direction that is different from the applied dc drive direc-|gigs through 2D periodic arrays.
tion. For small ac drives, we observe phase locking in the
form of steps in the longitudinal velocity when the frequency
of the ac drive matches with the frequency of the internally
generated ac velocity component. For ac drives large enough We thank C. Bechinger, M. Chertkov, D. G. Grier, P. T.
that the particle can encircle at least one potential maximuniKorda, and Z. Toroczkai for useful discussions. This work
at zero dc drive, we find phase locking steps in the longituwas supported by the US DOE under Contract No. W-7405-
dinal velocity for increasing dc drive. Additionally, in this ENG-36.
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